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Shell script basics
● A script contains various shell commands to be executed in an 

automatic fashion.
● This is a text file, no compilation needed.
● To be interpreted properly, the first line should contain a specific 

command referencing the shell command to use (also called “sh-
bang” or “shebang”):

#!/bin/bash

● Lines beginning with a hash symbol (#) are comments.
● The file must have the execution bit set (“chmod +x myscript.sh”).



  

Saving a script file
● Files can be copied to various locations depending on 

their purpose:
– $HOME/bin for your personal script collection 1

– /usr/local/bin for scripts shared with all users on the system.
– /usr/local/sbin for scripts to be used by root only.

● If the script is in your $PATH, you can call it by name 
directly. Otherwise, you will need to prefix the file name 
with the dot and slash characters (./myscript.sh).

● There is no need for a file extension; you can create a 
script with or without .sh in the name.

1: this would require to adjust the $PATH variable



  

Using regular commands
● Command available on the system can be 

integrated into a script (usually excluding the 
interactive ones).

● You may want to call commands with their fullpath 
name (“/usr/bin/date” instead of “date”) to avoid 
possible conflicts and aliases issues.

● When using specific option, the long format may 
be recommended; if using the short format a 
comment may be needed.



  

Variables
● To set a variable, directly use a name with the value assigned:

variable=”hello world”
● Calling a variable is done by using its name prefixed with a dollar sign

echo $variable
● Variable names are case sensitive, and can only include letters, number 

and the underscore character.
● By default, all variables are strings. You can declare an integer by using 

the keyword “let”:

let variable=5
echo $(($variable+5))



  

Test constructs
● To perform a logical test you can use the keyword 

“test” or the alias “[“:

    test -e /etc/passwd
    [ -e /etc/passwd ]

● For arithmetic testing you should use a different 
syntax:

    (( 5 > 4 ))
● Spaces are important!



  

Common file test operators
● -e file - the file exists
● -f file  - the file is a regular file
● -s file - the file size is not null
● -d file - the file is a directory
● -r/-w/-x file - the file has the appropriate 

permission for the user running the test



  

Common string test operators

● str1 == str2 - string 1 equals string 2
● str1 != str2  - string 1 doesn’t equals 

string 2
● -z str1 - string 1 is null
● -n str1 - string 1 is not null



  

Common integer test operators

● -eq - equal
● -ne - not equal
● -gt  - greather than
● -ge - equal to or greater than
● -lt - lesser than
● -le - equal to or lesser than



  

Combining tests
You can perform multiple tests at 
once using -a for a logical AND or
-o for a logical OR:

– <test1> -a <test2>
– <test1> -o <test2>



  

if condition
if <test>

then

       <code>

else

       <code>

fi



  

for loop
for argument in list

do

        <code>

done

Each item in the list must be delimited 
by spaces.



  

while loop
while <test>

do

        <code>

done



  

References
● One of the most complete references 

about Bash scripting is the “Advanced 
Bash-Scripting Guide”, available online.

● https://tldp.org/LDP/abs/html/
● You can also use the ShellCheck tool to 

find bugs in your code:
● https://www.shellcheck.net/



  

Annex: updating the $PATH variable

● Edit your .profile or .bashrc file
● Add the following lines:

PATH=$PATH:$HOME/bin
export PATH

● This will take effect at your next login.
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