

Linux Administration

Scripting

Xavier Belanger

This work is licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

● Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

● ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

● No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Shell script basics
● A script contains various shell commands to be executed in an

automatic fashion.
● This is a text file, no compilation needed.
● To be interpreted properly, the first line should contain a specific

command referencing the shell command to use (also called “sh-
bang” or “shebang”):

#!/bin/bash

● Lines beginning with a hash symbol (#) are comments.
● The file must have the execution bit set (“chmod +x myscript.sh”).

Saving a script file
● Files can be copied to various locations depending on

their purpose:
– $HOME/bin for your personal script collection 1

– /usr/local/bin for scripts shared with all users on the system.
– /usr/local/sbin for scripts to be used by root only.

● If the script is in your $PATH, you can call it by name
directly. Otherwise, you will need to prefix the file name
with the dot and slash characters (./myscript.sh).

● There is no need for a file extension; you can create a
script with or without .sh in the name.

1: this would require to adjust the $PATH variable

Using regular commands
● Command available on the system can be

integrated into a script (usually excluding the
interactive ones).

● You may want to call commands with their fullpath
name (“/usr/bin/date” instead of “date”) to avoid
possible conflicts and aliases issues.

● When using specific option, the long format may
be recommended; if using the short format a
comment may be needed.

Variables
● To set a variable, directly use a name with the value assigned:

variable=”hello world”
● Calling a variable is done by using its name prefixed with a dollar sign

echo $variable
● Variable names are case sensitive, and can only include letters, number

and the underscore character.
● By default, all variables are strings. You can declare an integer by using

the keyword “let”:

let variable=5
echo $(($variable+5))

Test constructs
● To perform a logical test you can use the keyword

“test” or the alias “[“:

 test -e /etc/passwd
 [-e /etc/passwd]

● For arithmetic testing you should use a different
syntax:

 ((5 > 4))
● Spaces are important!

Common file test operators
● -e file - the file exists
● -f file - the file is a regular file
● -s file - the file size is not null
● -d file - the file is a directory
● -r/-w/-x file - the file has the appropriate

permission for the user running the test

Common string test operators

● str1 == str2 - string 1 equals string 2
● str1 != str2 - string 1 doesn’t equals

string 2
● -z str1 - string 1 is null
● -n str1 - string 1 is not null

Common integer test operators

● -eq - equal
● -ne - not equal
● -gt - greather than
● -ge - equal to or greater than
● -lt - lesser than
● -le - equal to or lesser than

Combining tests
You can perform multiple tests at
once using -a for a logical AND or
-o for a logical OR:

– <test1> -a <test2>
– <test1> -o <test2>

if condition
if <test>

then

 <code>

else

 <code>

fi

for loop
for argument in list

do

 <code>

done

Each item in the list must be delimited
by spaces.

while loop
while <test>

do

 <code>

done

References
● One of the most complete references

about Bash scripting is the “Advanced
Bash-Scripting Guide”, available online.

● https://tldp.org/LDP/abs/html/
● You can also use the ShellCheck tool to

find bugs in your code:
● https://www.shellcheck.net/

Annex: updating the $PATH variable

● Edit your .profile or .bashrc file
● Add the following lines:

PATH=$PATH:$HOME/bin
export PATH

● This will take effect at your next login.

	Title - Scripting
	License
	Shell script basics
	Saving a script file
	Using regular commands
	Variables
	Test constructs
	Common file test operators
	Common string test operators
	Common integer test operators
	Combining tests
	if condition
	for loop
	while loop
	References
	Annex: updating the $PATH variable

