

Linux Administration

Software management

Xavier Belanger

This work is licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

● Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

● ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

● No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Installing new applications
● By default, most applications added to a Linux

system are already made available by the
distribution that you are using. The process boils
down to identify and install the right package.

● On occasion, you may need to install an
application directly from source and compile it.

● Last, few applications (mostly commercial ones)
will come as an independent binary and will have
their own installation process.

Package management systems
● There is two main packaging systems used

across various Linux distributions:
– apt, originally used with Debian
– rpm, originally used with Red Hat

● One cannot be used instead of or with the
other.

● Few distributions may have a packaging
system of their own.

Source
code

Binaries Package

Meta
information

Dependencies
list

Documentation

Configuration

Linux package
general anatomy

Packages repositories
● Packages managed by a distribution are hosted in

repositories (repos, for short).
● Applications are already compiled, for specific

plateforms and with specific options.
● The source is also available, if you need to

repackage an application yourself.
● Various repositories can be used, usually by release

and architecture.
● Repositories can be mirrored on the Internet.

Updates frequency
● Depending on the Linux distribution

and the branch that you are using
(stable, testing), updates may be
available at various rates.

● Subscribe to the announce distribution
list (or RSS feed or similar system) to
know when new patches are released.

apt packages
● Stands for “Advanced package tool”.
● apt is used by Debian, Ubuntu and other

Debian-based distributions.
● apt (and other related commands) is a

front-end for the dpkg tool (Debian
package manager).

● File names are using the .deb extension.

apt basic operations
● Searching for a package

apt search <pattern>
● Installing a package

apt install <package>
● Removing a package

apt remove <package>
● Updating the package list

apt update
● Upgrading all installed packages

apt upgrade

rpm packages
● Originally standing for “Red Hat Package Manager”,

now used as “RPM Package Manager”.
● yum is the most common front-end to manage rpm

packages. dnf is a newest tool designed to replace
yum.

● RPM is mostly used by Red Hat Enterprise Linux,
Fedora, CentOS, Rocky Linux, Oracle Linux and
SUSE Linux.

● File names are using the .rpm extension.

yum basic operations
● Searching for a package

yum search <pattern>
● Installing a package

yum install <package>
● Removing a package

yum remove <package>
● Updating the package list

yum check-update
● Upgrading all installed packages

yum upgrade

Installing software from sources

● Some applications may not be packaged for
your distribution (too old or too recent).

● Some applications may require options
defined at compilation time; a package may
not include the ones that you need.

● You may want to create a patch or join the
development team for a project; compiling
code will be part of that process.

Building environment
● Compiling some core, low-level applications

(glibc, openssl, …) should be done with
caution as you do not want to replace the
ones provided by your distribution.

● Compiling some applications may use some
resources (CPU, storage space, …).

● It is recommended to set a specific,
independent system for that purpose.

Preparatory steps
● Check for documentation provided on the software

website, with the source files.
● Check for dependencies, including version numbers.
● Subscribe to the announce distribution list (or RSS

feed or similar system) to know when new versions
are released.

● If you get stuck, ask on forums, distribution lists or
even contact the developers. Always provide details.

Obtaining the source files
● Download the source files and check their

validity (checksum, digital signature).
● You can also clone a git repository, but that

may not give you a stable version.
● Decompress the files in an appropriate

directory (typically /usr/local/src).
● Check for documentation files, configuration

examples and release notes.

GNU Autotools
● For many applications developed in C, the most

common build system are the GNU Autotools; it’s
a suite of applications to configure, check and
compile source code.

● In it’s most basic expression, three commands are
used:
– ./configure
– make
– make install

./configure
● This step is the one that define the build

options and other options on how to use the
software:
– specific features
– configuration files, log files locations, ...
– linked libraries, databases connections, …

● ./configure usually provides some internal
help

make
● This is the main operation, it could

be really time consuming.
● Just wait.

make install
● After a successful compilation, the software

can be installed into the system (binaries,
configuration files, manual pages, …).

● In some cases, updating the list of shared
libraries could be needed before using the
new application (ldconfig).

● Some applications also provide a make
uninstall target.

Maintaining your application
● Repeat the same steps for each

new version, with updates for new
features as needed.

● The config.log file keeps track of
the options used with the previous
installation.

	Title - Software management
	License
	Installing new applications
	Package management systems
	Linux package general anatomy
	Packages repositories
	Updates frequency
	apt packages
	apt basic operations
	rpm packages
	yum basic operations
	Installing software from sources
	Building environment
	Preparatory steps
	Obtaining the source files
	GNU Autotools
	./configure
	make
	make install
	Maintaining your application

