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Installing new applications
● By default, most applications added to a Linux 

system are already made available by the 
distribution that you are using. The process boils 
down to identify and install the right package.

● On occasion, you may need to install an 
application directly from source and compile it.

● Last, few applications (mostly commercial ones) 
will come as an independent binary and will have 
their own installation process.



  

Package management systems
● There is two main packaging systems used 

across various Linux distributions:
– apt, originally used with Debian
– rpm, originally used with Red Hat

● One cannot be used instead of or with the 
other.

● Few distributions may have a packaging 
system of their own.
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Packages repositories
● Packages managed by a distribution are hosted in 

repositories (repos, for short).
● Applications are already compiled, for specific 

plateforms and with specific options.
● The source is also available, if you need to 

repackage an application yourself.
● Various repositories can be used, usually by release 

and architecture.
● Repositories can be mirrored on the Internet.



  

Updates frequency
● Depending on the Linux distribution 

and the branch that you are using 
(stable, testing), updates may be 
available at various rates.

● Subscribe to the announce distribution 
list (or RSS feed or similar system) to 
know when new patches are released.



  

apt packages
● Stands for “Advanced package tool”.
● apt is used by Debian, Ubuntu and other 

Debian-based distributions.
● apt (and other related commands) is a 

front-end for the dpkg tool (Debian 
package manager).

● File names are using the .deb extension.



  

apt basic operations
● Searching for a package

apt search <pattern>
● Installing a package

apt install <package>
● Removing a package

apt remove <package>
● Updating the package list

apt update
● Upgrading all installed packages

apt upgrade



  

rpm packages
● Originally standing for “Red Hat Package Manager”, 

now used as “RPM Package Manager”.
● yum is the most common front-end to manage rpm 

packages. dnf is a newest tool designed to replace 
yum.

● RPM is mostly used by Red Hat Enterprise Linux, 
Fedora, CentOS, Rocky Linux, Oracle Linux and 
SUSE Linux.

● File names are using the .rpm extension.



  

yum basic operations
● Searching for a package

yum search <pattern>
● Installing a package

yum install <package>
● Removing a package

yum remove <package>
● Updating the package list

yum check-update
● Upgrading all installed packages

yum upgrade



  

Installing software from sources

● Some applications may not be packaged for 
your distribution (too old or too recent).

● Some applications may require options 
defined at compilation time; a package may 
not include the ones that you need.

● You may want to create a patch or join the 
development team for a project; compiling 
code will be part of that process.



  

Building environment
● Compiling some core, low-level applications 

(glibc, openssl, …) should be done with 
caution as you do not want to replace the 
ones provided by your distribution.

● Compiling some applications may use some 
resources (CPU, storage space, …).

● It is recommended to set a specific, 
independent system for that purpose.



  

Preparatory steps
● Check for documentation provided on the software 

website, with the source files.
● Check for dependencies, including version numbers.
● Subscribe to the announce distribution list (or RSS 

feed or similar system) to know when new versions 
are released.

● If you get stuck, ask on forums, distribution lists or 
even contact the developers. Always provide details.



  

Obtaining the source files
● Download the source files and check their 

validity (checksum, digital signature).
● You can also clone a git repository, but that 

may not give you a stable version.
● Decompress the files in an appropriate 

directory (typically /usr/local/src).
● Check for documentation files, configuration 

examples and release notes.



  

GNU Autotools
● For many applications developed in C, the most 

common build system are the GNU Autotools; it’s 
a suite of applications to configure, check and 
compile source code.

● In it’s most basic expression, three commands are 
used:
– ./configure
– make
– make install



  

./configure
● This step is the one that define the build 

options and other options on how to use the 
software:
– specific features
– configuration files, log files locations, ...
– linked libraries, databases connections, …

● ./configure usually provides some internal 
help



  

make
● This is the main operation, it could 

be really time consuming.
● Just wait.



  

make install
● After a successful compilation, the software 

can be installed into the system (binaries, 
configuration files, manual pages, …).

● In some cases, updating the list of shared 
libraries could be needed before using the 
new application (ldconfig).

● Some applications also provide a make 
uninstall target.



  

Maintaining your application
● Repeat the same steps for each 

new version, with updates for new 
features as needed.

● The config.log file keeps track of 
the options used with the previous 
installation.
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